RSTAR/WV-CKD

Development of the look-up table of the *k*-distribution in the gas absorption region around 940 nm for the sky-radiometer data analysis

Topic: PWV estimation from the sky-radiometer

Masahiro Momoi (m.momoi@biglobe.jp) Chiba University, Japan

Contributed by:

H. Irie, M. Sekiguchi, T. Nakajima, and H. Takenaka

Contents:

✓ On-site self-calibration at 940 nm channel from angular distribution [Momoi et al., 2020, AMT]

✓ Improvement of the gas calculation

300地点あたりの発生回数

Atmospheric water vapor

Meteorological aspects

- To bring rains
- To affect water cycle in Earth system

Climatological aspects

Water vapor is specified as an essential climate variable

- Water vapor absorbs IR and raises the temperature.
- Rising temperature increases the amount of water vapor in the atmosphere
- \rightarrow There is a heat-up cycle that accelerates temperature heating

Sky radiance observation

<u>Measurement</u>

- Direct solar irradiance
- : every 1 min.
- Angular distribution of the diffuse radiance
 : every 10 min./ 15 min.

How to estimate PWV from transmittance?

Beer-Lambert's law

$$: F = \tilde{F}_0 \tilde{T}_{H_2 O} T_{Ray} T_{Aer}$$

PROBLEM

 $\Rightarrow \tilde{F}_0$ and $\tilde{T}_{H_2 O}$ depend on the filter response function (Ψ)

1. \tilde{F}_0 : Calibration constant of radiometer : $\tilde{F}_0 = C \int \Psi F_{sol} d\lambda$

2. \tilde{T}_{H_20} : Transmittance of the water vapor (1) Physics-based approach $: \tilde{T}_{H_20} = \frac{\int \Psi F_{sol} T_{H_20} d\lambda}{\int \Psi F_{sol} d\lambda}$ (2) Empirical equation [Bruegge et al., 1992] $: \tilde{T}_{H_20} \approx \exp[-a(mw)^b]$ (m: optical mass, w: precipitable water vapor)

Challenges of PWV estimation from radiometer

Issue of application for international network:

1. Maintaining traceability is costly (it must be calibrated at a stable site).

The calibration techniques at unstable site were developed for the weak gas absorption channel from UV to NIR.

(Nakajima et al., 1996; Campanelli et al., 2007; Mok et al., 2018; Nakajima et al., 2020)

⇒ This techniques made possible to calibrate with on-site.

 \Rightarrow On-site self-calibration

Approach: We expanded such technology to gas species (water vapor).

2. Adjustment parameters need to be given to each instrument

Approach: we developed the gas calculation in RTM with high speed by correlated *k*-distribution method.

Previous study: calibration of the water vapor channel

Beer-Lambert's law:
$$F = \tilde{F}_0 \tilde{T}_{H_2 O} T_{Ray} T_{Aer}$$

Bruegge et al. (1992): $\tilde{T}_{H_2O} \approx \exp[-a(mw)^b]$

 \bigstar Remark: Previous study used empirical equation \bigstar

 Langley like method (e.g., Uchiyama et al., 2014) PWV was inputted from the other instrument.
 Possible to calibrate under stable condition (AOT is constant). Adjusting parameters (*a*, *b*) were theoretically estimated.

$$\ln\left(\frac{F}{T_{\rm H_2O}}\right) = -m(\tau_R + \tau_a) + \ln F_0$$

2. Modified Langley method (e.g., Campanelli et al., 2014) Possible to calibrate under stable condition (AOT & PWV are constant).

$$\frac{\ln F + m(\tau_R + \tau_a)}{\mathbf{y}} = -\frac{a(mw)^b}{\mathbf{x}} + \ln F_0$$

Brief of Momoi et al. (2020)

Information on sky radiance around 940 nm

Normalized radiance (Independent of F_0)

(1) Almucantar plane

$$R = |\mu| \frac{L}{F} = \omega \tau P(\Theta) + q(\Theta)$$

(2) Principal plane (
$$\eta \equiv |\mu|^{-1} - |\mu_0|^{-1}$$
)

$$R = |\mu| \frac{L}{F} = \omega \tau P(\Theta) \frac{e^{-\eta \tau(\lambda)} - 1}{\eta \tau(\lambda)} + q(\Theta)$$

 τ : optical thickness μ : cosine of zenith angle μ_0 : cosine of solar zenith angle ω : single scattering albedo Θ : scattering angle $P(\Theta)$: normalized phase function $q(\Theta)$: multiple scattering contribution $\Delta\Omega$: solid view angle

Brief of Momoi et al. (2020)

PWV retrieval by SKYMAP/DSRAD procedure

PWV retrieval from the sky-radiometer observation data

- The new on-site self calibration method at water vapor channel (SKYMAP)
- The retrieval method of the precipitable water vapor (DSRAD)

<u>Advantage</u>

- > The water vapor channel can be calibrated with on-site data.
- The PWV can be estimated without adjusting parameters a, b. (We consider the filter response function.)

Brief of Momoi et al. (2020)

Sensitivity test using simulated data of SKYMAP

Continental average aerosol

Water-soluble, Soot, Insoluble

The PWV was retrieved well when the PWV is less than 2 cm.

The PWV can't be retrieved when the PWV is more than 2 cm.

We can calibrate F_0 during dry season???

Challenges of PWV estimation from radiometer

Issue of application for international network:

1. Maintaining traceability is costly (it must be calibrated at a stable site).

The calibration techniques at unstable site were developed for the weak gas absorption channel from UV to NIR.

(Nakajima et al., 1996; Campanelli et al., 2007; Mok et al., 2018; Nakajima et al., 2020)

⇒ This techniques made possible to calibrate with on-site.

Approach: We expanded such technology to gas species (water vapor).

2. Adjustment parameters need to be given to each instrument

Approach: we developed the gas calculation in RTM with high speed by correlated *k*-distribution method.

How to calculate gas absorption rapidly?

(n = 2: standard CKD tables in RSTAR)

for the O3 9.6-µm band for a pressure of 25 mb and a temperature of 220 K.

Optimized quadrature numbers of new CKD tables

	WVCKD2	WVCKD5	WVCKD10	LBL	MODTRAN
	Correlated k-distribution method				Band model
Resolution [cm ⁻¹]	2	5	10	0.01	0.2
Mean computation times [/cm ⁻¹]					
917 – 1000 nm	2.18	1.18	0.734	100	5
920 – 961 nm	2.44	1.33	0.848	100	5

Finer CKD table needs more quadrature points

Computation time of WVCKDs are faster than that of LBL and MODTRAN

New LUTs VS previous LUT (SN-CKD)

Standard CKD table in RSTAR7 is used by sky-radiometer analysis programs:

- SKYMAP algorithm (Momoi et al., 2020, 2021)
- SKYRAD.pack MRI version 2 (Kudo et al., 2021)

Convolved sky radiances with an FWHM of 10 nm (sky-radiometer specification)

Actual observations with SKYMAP algorithm

<u>SKYNET sites in Japan</u> Chiba, Japan (140.10E, 35.63N, 2019)

- Sky-radiometer POM-02
- Microwave radiometer (MWR)

PWV derived with SKYMAP/DSRAD

PWV_{SNCKD} was underestimated!

 $\leftrightarrow \mathsf{PWV}_{\mathsf{WVCKD}}$ was good agreement with $\mathsf{PWV}_{\mathsf{MWR}}$.

- \Rightarrow An accurate CKD table is essential for estimating
 - PWV from sky-radiometer observations

PWV derived with SKYMAP/DSRAD

Summary

This study developed

- 1. New PWV estimation algorithm (SKYMAP algorithm) from sky-radiometer observation without pre- and post-calibration at a specific site (e.g., Mauna Loa Observatory),
- 2. New CKD tables for effectively reconstructing the sky radiances at 940 nm.

By application for actual SKYNET observation,

- 1. An accurate CKD table is essential for reconstructing sky radiance and estimating PWV from sky-radiometer observations
- 2. New PWV retrieval procedure (SKYMAP/DSRAD) is practical

Additional information:

- On-site self-calibration method was published in <u>AMT</u>.
- Physics-based PWV estimation program (DSRAD) are available on request.

For more information, please contact me (m.momoi@biglobe.jp or SLACK).

