Long-term evaluation of SKYRAD pack MRI version 2 retrievals and estimation of the vertical profile of the short-wave aerosol radiative effect in an alpine site

<u>Gabriele Fasano^{1,2}</u>, Henri Diémoz², Monica Campanelli³, Victor Estellés⁴, Rei Kudo⁵

 Sapienza University of Rome, Physics Dept., Rome, Italy; 2. ARPA Valle d'Aosta, Saint-Christophe, Italy;
 ISAC-CNR, Rome, Italy; 4. University of Valencia, Valencia, Spain; 5. Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan

6th International SKYNET Workshop

November, 2021

Sites

Evaluation of SKYRAD MRIv2 algorithm: instruments and methodology

PREDE POM-02 sky radiometer

- Comparison between SKYRAD MRIv2, SKYRAD 4.2 and AERONET V3 retrievals
- **Dataset:** all corresponding retrievals ($\Delta t \le 10$ mins) within the 2017-2019 period, AOD>0.1

CIMEL CE318

sunphotometer

Aerosol Optical Properties: aerosol optical depth, single scattering albedo, asymmetry factor, refractive index at 4 common wavelengths: 440, 675, 870 e 1020 nm; volume size distribution

Volume distribution - Absolute RMSD

IRI 675 nm Valencia

RRI 675 nm Valencia

SSA 675 nm Valencia

Estimation of the aerosol short-wave radiative effect

- Aosta—Saint-Christophe site (570 m asl)
- Inside an Alpine valley, surrounded by high mountains (>3500 m)
- Near Po Valley, polluted hotspot in Europe

Estimation of the aerosol short-wave radiative effect: instruments and methodology

PREDE POM-02 sky radiometer

Lufft CHM15k-Nimbus Automated Lidar Ceilometer

Estimation of the aerosol short-wave radiative effect

Example: secondary fine aerosol of urban/industrial origin

2018-03-25

Estimation of the aerosol short-wave radiative effect

Example I: secondary fine aerosol of urban/industrial origin

Radiative closure at the surface

- Surface irradiances simulated with RTM have been compared to co-located pyranometer data, in both turbid and clean atmospheric conditions
- > The RTM simulations agree very well with pyranometer observations

25/03/2018

23/03/2018

Results

Evaluation of SKYRAD MRIv2 algorithm

- Overall: SKYRAD MRIv2 retrievals show a better agreement with AERONET V3 ones, for every aerosol property and in both sites
- Remarkable improvement in the agreement of SSA and IRI: more stable and physically consistent values. This is crucial in order to assess the aerosol radiative effects

Estimation of the aerosol short-wave radiative effect

- The effect of atmospheric aerosol on the short-wave radiative fluxes can be significant even in the Alpine environment, usually considered as pristine
- The Alpine environment is particularly challenging for this kind of studies: for example, taking correctly into account the surface albedo (due to the possible presence of snow) is crucial to accurately retrieve aerosol absorbing capacity (SSA and IRI).

Thank you for your attention!

References:

- Kudo et al., Optimal use of the Prede POM sky radiometer for aerosol, water vapor, and ozone retrievals, Atmos. Meas. Tech., 2021. DOI: 10.5194/amt-14-3395-2021
- Fasano et al., Vertical profile of the clear-sky aerosol direct radiative effect in an Alpine valley, by the synergy of ground-based measurements and radiative transfer simulations, B. Atmos. Sci. Tech., 2021. DOI: 10.1007/s42865-021-00041-w

Instruments and methodology - part II

Automated LiDAR Ceilometer (ALC)

Takes advantage of the backscattering of a laser pulse (1064 nm) by aerosol particles

$$\beta_{att}(z,t) = \beta_T(z,t) e^{-2\int_{z_{min}}^{z} \alpha_T(s,t) ds}$$

The technique is based on an independent or a priori estimate of the lidar ratio. To this purpose, we use validated functional relationships

$$\alpha_T = \alpha_p + \alpha_m$$
; $\beta_T = \beta_p + \beta_m$

$$LR = \frac{\alpha_p}{\beta_p}$$

Instruments and methodology - part II

Automated LiDAR Ceilometer (ALC)

Comparison between the AOD retrieved by the sky radiometer and the AOD obtained by vertical integration of the ALC-derived aerosol extinction coefficient

Part I: evaluation of SKYRAD MRIv2 retrievals

Sensibilità albedo superficiale - 675 nm

Ora UTC

Part II: estimation of the short-wave aerosol radiative effect

Example II: coarse mineral aerosol from the Sahara desert

Part II: estimation of the short-wave aerosol radiative effect

Hourly values

Net balance [W m⁻²], 25/03/2018

Net balance	[W m ⁻²],	25/06/2019
-------------	-----------------------	------------

Ora UTC	7-8	8-9	9-10	10-11	11 - 12	12-13	13-14	14 - 15	15-16	Ora UTC	6-7
TOA	-15.1	-9.2	-3.1	-0.7	-0.7	3.9	1.6	-0.1	-3.1	TOA	-21.
ATM	30.7	30.4	30.0	29.2	25.8	34.1	30.2	27.2	24.0	ATM	25.3
SFC	-45.8	-39.6	-33.1	-29.9	-26.5	-30.1	-28.6	-27.3	-27.1	SFC	-47.

Ora UTC	6-7	7-8	8-9	9-10	10-11	12 - 13	13-14	14-15	15 - 16	16-17
TOA	-21.9	-14.7	-9.0	-5.4	-3.5	-0.3	-2.0	-6.4	-10.1	-15.5
ATM	25.5	24.0	23.5	23.2	24.7	38.5	40.7	36.2	37.1	38.5
SFC	-47.4	-38.7	-32.4	-28.5	-28.2	-38.7	-42.7	-42.6	-47.2	-53.9

Heating rate [K day⁻¹], 25/03/2018

Ora UTC	7	8	9	10	11	12	13	14	15
7-8 km	0.004	0.003	0.002	0.001	0.001	0.000	0.001	0.001	0.002
6-7 km	0.006	0.004	0.002	0.002	0.001	0.001	0.001	0.002	0.003
5-6 km	0.009	0.006	0.004	0.003	0.003	0.002	0.002	0.004	0.006
4-5 km	0.037	0.037	0.036	0.031	0.029	0.035	0.037	0.111	0.222
3-4 km	0.429	0.467	0.529	0.482	0.518	0.712	0.688	0.702	0.668
2-3 km	1.157	1.140	1.092	1.093	0.983	1.307	1.153	0.974	0.734
1-2 km	1.115	1.077	1.003	1.020	0.797	1.035	0.845	0.659	0.512
0.57-1 km	0.351	0.436	0.619	0.510	0.380	0.521	0.441	0.382	0.398

Heating rate [K day⁻¹], 25/06/2019

Ora UTC	6	7	8	9	10	12	13	14	15	16
7-8 km	0.006	0.004	0.003	0.002	0.002	0.002	0.003	0.004	0.005	0.007
6-7 km	0.012	0.008	0.005	0.004	0.004	0.004	0.006	0.007	0.010	0.013
5-6 km	0.186	0.216	0.187	0.182	0.223	0.433	0.507	0.443	0.410	0.411
4-5 km	0.313	0.374	0.337	0.304	0.392	0.897	1.018	0.904	0.908	0.931
3-4 km	0.522	0.484	0.465	0.470	0.518	0.898	0.935	0.855	0.913	0.957
2-3 km	0.718	0.600	0.602	0.615	0.632	0.803	0.779	0.688	0.712	0.746
1-2 km	0.532	0.486	0.518	0.508	0.499	0.609	0.613	0.519	0.521	0.527
0.57-1 km	0.203	0.294	0.361	0.394	0.299	0.303	0.368	0.330	0.333	0.297

Part II: radiative closure at the surface

25/03/2018

4 \$ glob
dir glob Relative difference (sim. - meas., %) Relative difference (sim. - meas., %) • dir diff diff 2 20 0 0 20 -20 4 4 11:00 10:00 12:00 14:00 16:00 09:00 13:00 15:00 Local time (CET) Local time (CET)

22

23/03/2018