Dependence of Aerosol Light Scattering on the Chemical Composition and Size of Particles in Beijing Haze

Qingxia Ma

College of Environment and Planning, Henan University, China

Yunfei Wu, Shenglei Fu, Zhiwei Han, Renjian Zhang

Institute of Atmosphere Physics, Chinese Academy of Sciences, China

Daizhou Zhang

Prefectural University of Kumamoto, Kumamoto, Japan

Backgroud: facts in severe haze pollution

- 1. Formation of secondary (inorganic and organic) species: Key Process leading to severe haze.
- 2. Optical properties (light scattering and absorption ability): Largely Enhanced by haze particles

Purpose:

To quantify the dependence of aerosol scattering coefficients on aerosol size and composition in haze.

Method

Place: Institute of Atmospheric Physics (39°58'N, 116°22'E), Chinese Academy of Sciences

Realtime measurement items: (inlet-cutoff 2.5 µm)

Scattering coefficients of $PM_{2.5}(\sigma_{sp})$ at 450, 525, 635 nm (Integrating nephelometer Aurora 3000, *calibrated per day*)

air dehydrated to RH < 40% σ_{sp_dry} (σ_{sp_dry} correction with Muller et al. (2011))

Scattering Ångström exponent (SAE)

$$SAE = \frac{\log(\sigma_{sp_dry}(\lambda_2)) - \log(\sigma_{sp_dry}(\lambda_1))}{\log(\lambda_2) - \log(\lambda_1)}$$

 $[(\lambda_1, \lambda_2): (450, 635), (525, 635), (450, 525)]$

Method

Measurement items: (others)

PM_{2.5} real time concentration (R&P Partisol® Model 2025)
Size distribution: ~10–700 nm (DMA, model 3081)
Daytime and nighttime PM_{2.5} filter samples for ionic composition analysis (MiniVol PM sampler): February 19 - March 12, 2014
Meteorological conditions: RH, T, P, WD, WS

Composition analysis:

F⁻, Cl⁻, NO₃⁻, SO₄²⁻, NH₄⁺, K⁺, Na⁺, Ca²⁺, Mg²⁺ (Dionex ICS-90)

Metals (ICP-mass Elan 6100)

OC, EC (DRI-2001A)

*Secondary inorganic aerosols (SIAs) = sum of SO_4^{2-} , NO_3^{-} , and NH_4^{+}

*Organic matter (OM) = 1.4 × OC

Aerosol water content (A.C.) : ISORROPIA II model with the ionic composition

Results Overview of the filter collection period

 σ_{sp_dry} at 525 nm : $530.3 \pm 573.5 \text{ Mm}^{-1}$ **SSA**: 0.88 ± 0.06 $\sigma_{sp_dry} \propto PM_{2.5} \& RH$ **SAE**: 1.3±0.3 (450-635nm) var. *opposite to* σ_{sp_dry} (high in clean and with small σ_{sp_dry} ; small in polluted with large σ_{sp_dry})

(a) Wind, $PM_{2.5}$; (b) T, RH; (c) SAE of 635-450, 635-525, 525-450 nm; (d) σ_{sp_dry} , Calculated single-scattering albedo (SSA).

Results σ_{sp_dry} , SAE, MSE *vs* PM_{2.5} mass and composition

 σ_{sp_dry} increased dramatically with PM_{2.5} but also was influenced by other factors (*different trends at the four PM*_{2.5} levels).

SAE 1.4-2.0 → dominance of small particles (SIAs: 23-53%; OM: 47-26% in mass).

MSE (mass scattering efficiency): $3.6 \text{ m}^2 \text{ g}^{-1}$

 σ_{sp_dry} at 525nm, colored by the SAE of 450-650 nm at four PM_{2.5} levels. pie graphs: relative chemical compositions of PM_{2.5}

Results σ_{sp_dry} , SAE, MSE *vs* PM_{2.5} mass and composition

Pollution Level	σ _{sp_dry} (Mm ⁻¹)	SAE	MSE (m ² g ⁻¹)	r _{SIAs} (%)	r _{OM} (μg m ⁻³)	PM _{2.5} (μg m ⁻³)
Clean	- 270	1.4 - 2.0	3.6	23	47	<75
Light-Medium	270 - 560	1.2 - 1.8	3.9	38	30	75-150
Heavy	560 - 980	1.0 - 1.2	4.2	42	26	150-250
Severe	1000 - 2250	0.4 - 1.2	4.6	53	27	>250

 σ_{sp_dry} light scattering coefficient; SAE Scattering Ångström exponent; MSE mass scattering efficiency; r_{SIAs} mass ratio of SIAs in PM_{2.5}; r_{OM} mass ratio of organic matter in PM_{2.5}

 σ_{sp_dry} , MSE, r_{SIAs} increased with PM_{2.5} SAE, r_{OM} decreased with PM_{2.5} Dependence of σ_{sp_dry} and MSE on particle size and composition

Results _{$\sigma_{sp dry}$}, SIAs vs RH

SIAs: 5→200µg m⁻³; SAE: 2.0→0.4; PM2.5: 50→431 µg m⁻³

RH: 10→70%

SIAs concentration and σ_{sp_dry} at 525nm wavelength versus RH, colored by the SAE of 450 nm and 650 nm. Size of circles represents PM_{2.5} concentration.

σ_{sp_dry} increased largely with RH with large particles and high PM_{2.5}, and slowly with small particles and low PM_{2.5}.

 $\sigma_{sp dry}$: RH < 40%, low; RH>40%: rapid at SAE<1.0&highPM_{2.5} and low at SAE>1.0&small PM_{2.5}

Results σ_{sp_dry} vs SIAs and Particle growth (PG)

Aerosol water content(WC), mean diameter(M.D.) of ~10–700 nm particles and $\sigma_{sp dry} vs SIAs/PM_{2.5} (M_{SIAs})$

Increase of W.C. and M.D. correlated closely with SIAs Changes of W.C. and M. D. much more sensitive to r_{SIAs} when $r_{SIAs} > 0.35$, leading to the large $\sigma_{sp_dry:}$ (critical value of r_{SIAs} 0.35)

Results

Positive correlation between $\sigma_{sp\ dry}$ and r_{SIAs}

Negative correlation between $\sigma_{sp_{dry}}$ and r_{OM}

 $\overline{\sigma}_{sp_dry}$ vs $\overline{r_{SIAs}}$ and r_{OM}

Enhancement of σ_{sp_dry} by SIAs much larger than by OM, *likely due to W.C.*

Results Respective contribution of chemical components (IMPROVE model estimation σ_{sp} : about 1.19 $\sigma_{sp dry}$)

Estimated σ_{sp} and the contribution of major chemical components

SIAs contributed the largest fraction of σ_{sp} , supporting the fact that the formation of SIAs played a key role in the enhancement of the measured $\sigma_{sp\ dry}$.

Summary

 σ_{sp_dry} enhancement related to RH and aerosol composition and size in haze

Thanks for your attention.

Daizhou Zhang Prefectural University of Kumamoto, Japan Email: dzzhang@pu-kumamoto.ac.jp